Стабилитрон устройство, принцип действия, характеристики

Как проверить стабилитрон мультиметром и сделать для него тестер своими руками

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя.

Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение.

Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение.

При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого.

Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет.

Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра.

Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В.

Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом.

Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке.

К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Читайте также:  NORD (антифриз) описание, характеристики, отзывы

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Стабилитрон | Принцип работы и маркировка стабилитронов

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Читайте также:  Что делать если пробило колесо на скорости

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Electronov.net | Библиотека

Диод (англ. diode, от др.-греч. δις — два и ὁδός — путь) – устройство на основе полупроводника, обладающее различной проводимостью в зависимости от направления электрического поля.

Принцип работы:

Принцип работы основан на использовании явления p-n перехода, проводимость которого зависит от полярности приложенного напряжения. Подробнее об этом явлении можно прочитать здесь.

Функции (в зависимости от конструкции и назначения):

  • Избирательное пропускание тока, в зависимости от его направления.
  • Стабилизация напряжения.
  • Прием световых сигналов.
  • Излучение света.

Назначение:

  • Преобразования переменного тока в однонаправленный пульсирующий (выпрямление тока).
  • Выделение средневыпрямленного и среднеквадратичного значения тока (диодные детекторы).
  • Защита устройств от неправильной полярности включения, защита входов схем от перегрузки, ключей от пробоя ЭДС самоиндукции, возникающей при выключении индуктивной нагрузки и т.п.
  • Коммутация высокочастотных сигналов.
  • Ограничение или стабилизация уровня напряжения.
  • Детектирование наличия и уровня освещенности.
  • Излучение света.

Классификация диодов:

По способу монтажа:

  • для поверхностного монтажа (SMD/SMT);
  • для навесного монтажа (TH);
  • интегральные (тонкопленочные).

По назначению:

  • Выпрямительные;
  • Импульсные;

Имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.

  • Детекторные;
  • Смесительные;

Предназначены для преобразования высокочастотных сигналов в сигналы разностной частоты, определяемой частотой задающего генератора.

  • Переключательные;

Применяются в устройствах управления уровнем сверхвысокочастотной мощности.

  • Ограничительные;
  • Защитные;

Защита аппаратуры от повышения сетевого напряжения.

Используются для генерации ВЧ и СВЧ колебаний.

  • Приемные;
  • Излучательные.

По конструкции:

  • Диод Шоттки;
  • СВЧ-диод;
  • Стабилитрон (диод Зенера);
  • Варикап;
  • Светодиод;
  • Фотодиод;
  • Pin диод;
  • Лавинный диод;
  • Лавинно-пролетный диод;
  • Диод Ганна;
  • Туннельный диод;
  • Обращенный диод.

По размеру pn перехода:

  • плоскостные;
  • точечные.

По частотному диапазону:

  • Низкочастотные;
  • Высокочастотные;
  • СВЧ.

ВАХ диода:

Для начала рассмотрим ВАХ идеального диода.

Рисунок 1 — ВАХ идеального диода.

Как видно из графика, диод проводит ток только при прямом напряжении на его выводах (т.е. плюс на аноде, минус на катоде). Ток I – это ток насыщения, т.е. максимальный обратный ток, вызванный тепловым дрейфом носителей тока в области p-n перехода, он на несколько порядков меньше прямого тока.

Для любителей формул, можно отметить, что ВАХ идеального диода описывается следующим выражением:

I – ток насыщения.

— тепловой потенциал (е – элементарный заряд электрона, k – постоянная Больцмана, Т – абсолютная температура).

Однако, в жизни, как известно, не все так просто и приходится постоянно напрягать свой мозг. ВАХ реального диода несколько отличается.

Читайте также:  Мед освидетельствование водителя просто так

Рисунок 2 — ВАХ реального диода.

Первое отличие – разное напряжение открывания диода (U), в зависимости от используемого материала полупроводника. Для кремния (Si) оно составляет примерно 0.7 В; для германия (Ge) – 0.3 В.

Второе отличие – другой вид обратной ветви, наличие пробоя p-n перехода.

Обычно выделяют участки электрического (А-Б) и теплового (Б-В) пробоя. Электрический пробой по своей сути нарушает лишь электрическую изоляцию областей p-n перехода, поэтому он является обратимым. Тепловой пробой напротив, нарушает физическую целостность p-n перехода, по сути, он просто выгорает, очевидно, что тепловой пробой является необратимым и приводит в негодность элемент.

Если Вам интересны причины пробоя, то следующий абзац для Вас.

Электрический пробой:

Электрический пробой возникает из-за резкого возрастания обратного тока вследствие резкого уменьшения сопротивления запирающего слоя. Внимательный читатель тут же возразит: «как же так? Ведь увеличение обратного напряжения для p-n перехода вызывает увеличение геометрических размеров запирающего слоя, а, следовательно, и его сопротивления!». А объясняется это дело достаточно просто. Реальность всегда придумывает Нам какие-либо сложности, поэтому в полупроводниках присутствуют два явления – лавинное размножение заряда и туннельный эффект, по названиям, которых и разделяют электрический пробой на лавинный и туннельный. И если для понимания первого эффекта достаточно прочитать про его суть, то туннельный эффект является квантовым эффектом, и для его понимания просто необходимо напрячь свой мозг.

Лавинное размножение заряда происходит за счет явления ударной ионизации, суть которого состоит в том, что электроны, ускоряясь электрическим полем, приобретают энергию, достаточную для выбивания электронов из атомов кристаллической решетки полупроводника, которые в свою очередь, также ускоряются данным полем, и происходит так называемый «лавинный» процесс отрыва электронов от атомов электрическим полем. Результатом этих процессов является резкое увеличение проводимости, а, следовательно, уменьшение сопротивления запирающего слоя практически без изменения его геометрических размеров.

Туннельный эффект (в англоязычной литературе также известен как эффект Зенера) наиболее вероятен в p-n переходах малой толщины. Суть его в том, что электроны, имеющие полную энергию меньше, чем высота энергетического барьера, таки проникают через этот энергетический барьер, в нашем случае — барьер p-n перехода, без изменения энергии, при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области. Этот эффект является полностью квантовым и противоречит классической механике. В качестве упрощенного объяснения можно сказать следующее. Из решения уравнения Шредингера для задачи потенциального барьера, следует ненулевой коэффициент прозрачности барьера для частиц с энергией равной или менее высоты этого барьера. Ну а чтобы устранить возможные логические трудности, можно вспомнить о соотношении неопределенностей (соотношение Гейзенберга), которое говорит о том, что если мы уменьшаем неопределенность в координате частицы, то увеличиваем неопределенность в импульсе, и наоборот. Следовательно, Мы не можем сказать достоверно, что частица, прошедшая барьер, действительно имела в момент прохождения определенную энергию.

Также нужно отметить, что туннельный эффект носит вероятностный характер, поэтому наибольшая вероятность его возникновения в p-n переходах с большой концентрацией примесей.

Тепловой пробой:

Тепловой пробой возникает, когда выделяемое на p-n переходе количество теплоты, создаваемое обратным током, превышает отводимое. Сопротивление полупроводника уменьшается с ростом температуры, следовательно, из-за снижения сопротивления p-n перехода, через него еще более возрастает протекающий ток и происходит тепловое разрушение p-n перехода.

Паразитные свойства диода:

Влияние температуры:

Так как дрейфовые процессы в полупроводнике играют не последнюю роль, то и температура может существенно изменить ВАХ p-n перехода и соответственно параметры диода.

Рисунок 3 — Влияние температуры на ВАХ диода.

— нормальная температура окружающей среды ();

— температура эксплуатации диода.

Емкость:

Так как p-n переход является границей раздела областей с различными типами проводимости, т.е. разно полярными зарядами, то вполне очевидно, что он имеет определенную величину электрической емкости. При обратном напряжении на переходе, запирающий слой, имеющий высокое сопротивление, играет роль диэлектрика.

В общем случае емкость диода состоит из барьерной и диффузионной.

Диффузионная емкость вызвана наличием разно полярных зарядов внутри полупроводника. Проявляется эта емкость при протекании значительного прямого тока.

– протекающий прямой ток через диод;

— эффективное время жизни неосновных носителей заряда;

— тепловой потенциал.

Барьерная емкость возникает из-за наличия неосновных носителей заряда, т.е. из-за того, что ток в полупроводнике может возникать не только при движении электронов, но и при движении дырок.

— емкость p-n перехода при Т = 20 °С и Uобр. = 0 В;

— обратное напряжение на диоде;

— контактная разность потенциала p-n перехода (для Si – 0.9-1.2 В; для Ge – 0.6-0.7 В);

— коэффициент распределения примесей в полупроводнике (0.5 для ступенчатого распределения; 0.3 для линейного).

Ссылка на основную публикацию
Средний танк Т-55 Энциклопедия военной техники
Т-55 - Советский средний танк 1958-1979 гг Т-55 – это советский средний танк на базе Т-54, использовавшийся во многих странах...
Солнечный водонагреватель
Солнечный водонагреватель своими руками как изготовить самодельную установку На сегодняшний день современные технологии и материалы позволяют использовать альтернативные источники энергии...
Соляная Кислота формула, плотность, цена, с чем реагирует
Соляная кислота - Её свойства, воздействие на человека Соляная кислота – вещество неорганического происхождения. Относится к списку очень сильных кислот....
Средства видеофиксации нарушений ПДД — 3 — Правовые вопросы — Caddy Club
Метрологическая поверка комплексов фотовидеофиксации Метрологическая служба ООО «СитиПлан» (далее МС) является самостоятельной правовой единицей, имеющей достаточные ресурсы для деятельности в...
Adblock detector